3 research outputs found

    Technical Report on: Tripedal Dynamic Gaits for a Quadruped Robot

    Full text link
    A vast number of applications for legged robots entail tasks in complex, dynamic environments. But these environments put legged robots at high risk for limb damage. This paper presents an empirical study of fault tolerant dynamic gaits designed for a quadrupedal robot suffering from a single, known ``missing'' limb. Preliminary data suggests that the featured gait controller successfully anchors a previously developed planar monopedal hopping template in the three-legged spatial machine. This compositional approach offers a useful and generalizable guide to the development of a wider range of tripedal recovery gaits for damaged quadrupedal machines.Comment: Updated *increased font size on figures 2-6 *added a legend, replaced text with colors in figure 5a and 6a *made variables representing vectors boldface in equations 8-10 *expanded on calculations in equations 8-10 by adding additional lines *added a missing "2" to equation 8 (typo) *added mass of the robot to tables II and III *increased the width of figures 1 and

    Task-Based Control and Design of a BLDC Actuator for Robotics

    Get PDF
    This paper proposes a new multi-input brushless DC motor current control policy aimed at robotics applications. The controller achieves empirical improvements in steady-state torque and power-production abilities relative to conventional controllers, while retaining similarly good torque-tracking and stability characteristics. Simulations show that non-conventional motor design optimizations whose feasibility is established by scaling model extrapolations from existing motor catalogues can vastly amplify the effectiveness of this new control-strategy

    Reimagining Robotic Walkers For Real-World Outdoor Play Environments With Insights From Legged Robots: A Scoping Review

    Get PDF
    PURPOSE For children with mobility impairments, without cognitive delays, who want to participate in outdoor activities, existing assistive technology (AT) to support their needs is limited. In this review, we investigate the control and design of a selection of robotic walkers while exploring a selection of legged robots to develop solutions that address this gap in robotic AT. METHOD We performed a comprehensive literature search from four main databases: PubMed, Google Scholar, Scopus, and IEEE Xplore. The keywords used in the search were the following: “walker”, “rollator”, “smart walker”, “robotic walker”, “robotic rollator”. Studies were required to discuss the control or design of robotic walkers to be considered. A total of 159 papers were analyzed. RESULTS From the 159 papers, 127 were excluded since they failed to meet our inclusion criteria. The total number of papers analyzed included publications that utilized the same device, therefore we classified the remaining 32 studies into groups based on the type of robotic walker used. This paper reviewed 15 different types of robotic walkers. CONCLUSIONS The ability of many-legged robots to negotiate and transition between a range of unstructured substrates suggests several avenues of future consideration whose pursuit could benefit robotic AT, particularly regarding the present limitations of wheeled paediatric robotic walkers for children’s daily outside use. For more information: Kod*lab (link to kodlab.seas.upenn.edu
    corecore